
AFRL-SR-AR-TR-10-0201

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathenng and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense. Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law. no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
REPORT DATE (DD-MM-YYYY)

05-02-2010
REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

01-05-2008 - 31-10-2009

4. TITLE AND SUBTITLE
"Process Integrated Mechanism for Human Computer Collaboration and Coordination"

Novel Approaches to Human-Computer Collaboration and Coordination

5a CONTRACT NUMBER

5b. GRANT NUMBER

FA9550-08-1-0218

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Dr. James Allen

5d PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Florida Institute for Human & Machine Cognition (IHMC)
40 South Alcaniz Street
Pensacola, Florida 32502

8 PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITORS REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unrestricted

13. SUPPLEMENTARY NOTES 20100616372
14. ABSTRACT

The PIM model addresses the problems associated with traditional approaches such as centralized, swarm based, or multi-agent based approaches.
Compared to centralized approaches, it ameliorates the robustness problem because no single node has to be in control. The PIM approach also
ameliorates the communication bottleneck by moving the processing to the data rather than the data to the process. The PIM approach retains the
conceptual simplicity and ease of programming of the centralized model as it removes the complications of negotiation protocols and timing
problems in coordinating multiple autonomous systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT

U

b. ABSTRACT

u
c. THIS PAGE

u

17. LIMITATION OF
ABSTRACT

Unlimited

18. NUMBER
OF
PAGES

10

19a. NAME OF RESPONSIBLE PERSON
Larry Warrenfeltz

19b. TELEPHONE NUMBER (Include area code)

850-202-4473
Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std Z39.18
Adobe Professional 7.0

Final Report:
Novel Approaches to Human-Computer Collaboration and Coordination

Background
Many military and civilian scenarios ranging from combat operations to surveillance and
reconnaissance to search and rescue can benefit significantly from teams of humans, robots,
unmanned vehicles, and other computers that collaborate and coordinate together to solve the
problem at hand. Efficient coordination mechanisms can greatly improve safety, robustness,
quality and efficiency of the overall human-machine operation, but designing and building
systems of humans and computers that coordinate well is a challenging problem, both in terms of
the complexity of developing and verifying the algorithms as well as the runtime efficiency.

This project addressed this challenging problem by developing and applying a novel approach
called a Process Integrated Mechanism (PIM). We developed the core PIM model, developed
prototype implementations, and demonstrated the viability of approach in a series of
demonstrations.

Prior research on coordination and collaboration has focused on both centralized and distributed
approaches, but both approaches have inherent limitations. The centralized approach requires a
coordinator to operate at a single point in the system, and this coordinator needs to have
complete information about all the entities involved. The resulting negative implications are that
the entire state of the system has to be transferred and collected at a single point and that a
single-point failure of the coordinator will cause the overall system to fail.

Several distributed approaches have been proposed and explored: process coordination systems
such as Linda, multi-agent approaches, and emergent behavior approaches inspired by biological
systems such as swarms of bees, colonies of ants, schools of fish or flocks of birds. These
distributed approaches do not have a single point of failure but significantly increase the
complexity of the programming model and the runtime. The increase in complexity is caused by
the requirement that entities construct and maintain a model of the state and expected behavior of
other entities, whether through direct communication with each other or through the
environment. Moreover, the multi-agent approach and the emergent behavior approach introduce
additional uncertainty in the behavior of the overall system, which is undesirable. While the
emergent approaches may utilize fairly simple programming models, the behavior they induce is
even more unpredictable.

Furthermore, both the centralized and distributed approaches may require significant
communications bandwidth to transmit state information over the network links that interconnect
the entities.

A Process Integrated Mechanism (PIM) is a novel programming model and a runtime
architecture that addresses the distributed coordination problem. The PIM approach retains the
advantage of a single coordinating authority while avoiding the structural difficulties that have
traditionally led to rejection in complex settings. The components in the PIM architecture are
conceived as parts of a single mechanism, even when they are physically separated and operate
asynchronously. A PIM is a mechanism integrated at the software level rather than by physical
connection. It maintains a single unified world-view, and behavior is controlled by a single
coordinating process.

In this report, we briefly describe our progress in three key areas: development of a precise
definition and description of the approach, development of a new runtime system that
implements the PIM model, and development of demonstrations in which a PIM system is used
to control a set of robots.

Result 1: Defining the Model
We completed an overview paper describing the PIM model that has been submitted for
publication in AI Magazine. The paper describes the key ideas, presents intuitive examples, and
makes the case for this radically new approach to distributed control. We present just a brief
overview here so as to set the context for the rest of this report.

The core idea of the PIM is to retain the perspective of the single controlling authority but
abandon the notion that it must have a fixed location in the system. Instead, the computational
state of the coordinating process is rapidly moved among the component parts of the PIM. More
precisely, a PIM consists of a single Coordinating Process (CP) and a set of Components each
capable of running the CP. The CP cycles amongst the components at a speed that is sufficient to
meet the overall coordination needs of the PIM, so that it can react to new events in a timely
manner. The time that the CP runs on a component is called its Residency Time. Each component
maintains the code for the CP, so the controlling process can move from component to
component by passing only a small run-time state using the mechanisms of strong mobility (Suri
et al, 2000). The underlying PIM runtime system manages the actual movement of the CP across
the components, and presents the programmer with a virtual machine in which there is a single
coordinating process operating with a unified global view although, in fact, the data and
computation remains distributed across the components.

The PIM model addresses some key problems associated with traditional approaches. In
comparison to centralized approaches, the PIM model ameliorates the robustness problem
because the coordinating process is not resident (except transitorily, with backups at all other
nodes) at any one location. It also ameliorates the communication bottleneck by moving the
process to the data rather than the data to the process. While multi-agent systems address the
robustness issue, they introduce significant complexity and uncertainty in achieving highly
coordinated behavior. The PIM approach removes the complications of negotiation protocols and
timing problems in distributed systems, enabling an ease of programming and conceptual
simplicity similar to centralized models, and often offering conceptual advantages over the
centralized model.

The PIM model presents the programmer with an intuitive abstraction that greatly simplifies
controlling distribution coordination. One can draw an analogy to Time-sharing. Time sharing
models revolutionized computing because they allowed multiple processes to run on the same
computer at the same time as though each was the only process running on that machine. The
programmer could construct the program with no concern for the details of the process switching
that is actually happening on the processor. To the programmer it is as though their program has
the entire processor, even though in reality it is only running in bursts as it is switched in and out.
The PIM model, on the other hand, provides a different illusion. To the programmer the PIM
appears as one process running on a single machine, but the CP is actually cycling from
component to component. Furthermore, the programmer see a single uniform memory, even
though memory is distributed, like in a distributed memory system. In other words, the set of

Time Sharing Process Integrated Mechanism
One processor, many processes One process, many processors
Supports the illusion that each process is the
only one on the machine

Supports the illusion that there is one entity
controlled by a single process

Each process sees only its 'allocated'
memory (a subpart of the overall system's
memory)

All memory on every processor is accessible as
though it were one memory.

Processes must be switched frequently
enough to maintain the illusion that each is
running all the time

Process must execute on each component
frequently enough to maintain illusion that it can
control any of the components at any time

Programmer writes program as though it is
the only one on the machine

Programmer writes program as though there is a
single machine.

Table 1: Comparing the PIM model with Time-Sharing

components appear to be a single entity (i.e., a PIM). The programmer need not be concerned
with the details of the process moving among the processors, moving data to the process, or even
where data is actually stored.

In the time sharing model, it is important that each process is run sufficiently frequently to
preserve the illusion that it is constantly running on the machine. Likewise, with the PIM model,
it is important that the CP runs on each component sufficiently frequently so that each
component can react appropriately to any changing circumstances in the environment. The
contrast between the time-sharing model and the PIM model is shown in Table 1.

Result 2: Development of a PIM Runtime System

The first prototype implementation of the PIM runtime was developed to demonstrate the key
concepts of the PIM. As part of this effort, we have significantly redesigned and re-implemented
the PIM runtime to provide several new features.

The original PIM runtime suffered from several limitations. It realized only the strict round-robin
migration pattern for the CP. Therefore, the CP would visit every node in the same sequence,
residing for the same length of time on each node. This time-slice was configurable, but only
prior to starting up the PIM runtime and launching the CP. Another limitation was that the
topology of the PIM had to be pre-configured prior to starting up the PIM runtime. This caused
two issues: no new nodes could be incorporated into an already operational PIM and the failure
of a node would cause the PIM runtime to terminate. The latter was a significant limitation given
that one of the main objectives of the PIM was to provide fault-tolerance in a transparent
manner. Note that this shortcoming was purely an implementation issue, not an issue with the
PIM model and approach.

The new runtime has addressed all of the above shortcomings. In particular, the new runtime
provides the following new important features:

Dynamic node discovery

The new PIM runtime dynamically discovers nodes that are reachable over the network and
incorporates them into the set of nodes that constitutes the PIM. If a node has not had a need to
transmit any data over a fixed ping interval, the node will transmit a short ping message to notify
its network neighbors regarding its presence and reachability. This allows each node in the PIM

to construct and maintain a list of neighbors. When a node sees a new neighbor for the first time,
that new neighbor is incorporated into the overall PIM. Note that we optimize this behavior by
only transmitting a ping when there is no other PIM-related or CP-related transmission.

Flexible CP migration

The second enhancement to the PIM runtime comes from significantly improving the migration
of the CP. In particular, the CP is no longer forced to migrate in a round-robin fashion with a
fixed residency time. The new runtime takes three factors into account in deciding the next node
to which the CP will migrate. The first factor is the CP operation. The second factor is the
network topology. The third factor is the neglect tolerance. The operation of the migration
algorithm is described as follows. When the CP is executing at node n, the PIM runtime
determines the next node to go to using the following steps. If the CP has executed an operation
that requires that the CP be resident on a specific node, then the runtime will attempt to migrate
the CP to that node next. If the specific node is not a neighbor of node n, then the PIM runtime
picks the node that has not been visited for the longest time and migrates the CP to that node. If
there is no specific node that the CP has to interact with, then the runtime migrates the CP to the
neighboring node that has not been visited for the longest time.

This new migration algorithm also works to incorporate dynamically discovered nodes. When a
new neighbor is discovered, that neighbor is inserted into the list of nodes to be visited with no
prior visit time. Therefore, it will automatically move to the head of the list of nodes to migrate
to and will be chosen by the runtime as the next node to migrate.

Opportunistic state recording

The PIM runtime provides fault-tolerance against node failures. Node failures may be
categorized into two classes: a node failure while it is not running the CP and a node failure
while it is running the CP. In the first case, the PIM runtime simply ignores the node that has
failed and proceeds to migrate the CP to another node. In the second case, the PIM runtime has
to recover the last known state of the CP, which is usually archived on the previous node.

In order to improve the fault-tolerance capability of the PIM, the runtime has been enhanced to
allow opportunistic recording of the CP state on as many nodes as possible. In particular, a node
that is transmitting the CP state always does a broadcast of the state information. This allows all
nodes within the network vicinity of the transmitting node to receive and archive the CP state.
This feature exploits the fact that doing a broadcast (or a multicast, which is another option) on a
wireless network does not consume any more channel capacity than doing a unicast. By realizing
this opportunistic state recording, the PIM runtime improves the ability of the PIM to recover the
last know state of the CP significantly.

Blocking and Non-blocking Interaction

The fourth improvement to the PIM runtime has been a redesign of the API for CP development.
In particular, the interaction with component parts has been improved by adding an
asynchronous interaction mode. Whenever the CP wishes to execute an action on a part, the CP
now has two choices - either to execute the action immediately or to schedule an action to be
completed in the near future. Choosing to execute the action immediately causes the CP to block
until the PIM migrates the CP to the target node. This also interacts with the flexible CP
migration algorithm described earlier. On the other hand, scheduling an action to be completed in

the near future does not influence the migration and it does not cause the CP to block. In the near
future, this capability will be enhanced to support specifying a tolerance interval while
scheduling an action.

Other Progress

Leveraging funding from another project, we have now setup a 96-node testbed environment (see
figure X below) that can also be used to test the PIM runtime. This testbed allows us to control
the connectivity between nodes in the testbed, both in terms of topology as well as reliability.
The testbed is also instrumented to measure all network traffic between the nodes, which will
enable us to measure the efficiency of the PIM. We plan to use this testbed to further experiment
with the PIM in the next year.

Figure 1: NOMADS 96-node Testbed

Figure 2: Pioneer robots being controlled by a PIM

Result 3: Demonstration of PIM-controlled Robot Teams
To demonstrate the viability of the PIM model, we used a PIM as a controller for a set of robots
that must act in a coordinated manner. We demonstrated effective control in two different
applications. The first is persistence surveillance, where a team of sensors must coordinate their
activity to track a moving object while minimizing power consumption. The second is part of a
pursuit scenario, where a team of robots must keep a target surrounded as it moves to try to
evade capture.

Persistent Surveillance

In this scenario, we have several fixed cameras, not able to move and that capture images of a
specific part of the field. We also have multiple Pioneer robots with the capability to move, each
equipped with a camera. The purpose of the test is to keep track of the targets while they move in
the field, minimizing the power needed to accomplish the goal.

Localization: A target in our experiment is represented by a robot that is not part of the PIM. To
localize the targets we use a localization sensor on the target. The target sends information about
its current location to a positioning server. The positioning server can be queried from the PIM
components to know the current position of the targets. To localize the robots in the field each
robot is equipped with a localization sensor that, along with odometer readings helps to compute
the position of the robot in the field.

To minimize power consumption, we must turn on the cameras and transmit images only from
the minimum set of cameras that allows continuous tracking of all the targets. In addition, robots
should be moved only when necessary: using a fixed camera is preferred to using a robot, and
turning a robot is preferred to moving a robot.

The CP: During a first phase of initialization we get the number of components of the PIM, we
get the type of each component (Pioneer or Fixed Camera), we evaluate the position and heading

of each robot (for the Pioneer), and we get the area of the field each fixed camera can see (from
the configuration file). At this point all is set to start a loop where:

1 - we query for the position of the targets;

2- apply a set cover algorithm to decide what is the minimum set of cameras we
need to turn on to keep track of all the targets and, if necessary, what robots we
need to move to keep track of targets that are currently not in the field of view of
any of the components;

3- we move the robots and turn on and off the cameras on the components
accordingly to what was evaluated.

Once we have the position of each target we apply a greedy algorithm to solve the set cover
problem. The greedy algorithm evaluates how many targets each robot has in its field of view,
and at each step picks the one that sees the highest number of targets, until there are no more
targets to cover or no more components to accomplish the task.

If the solution does not cover all the targets we analyze which Pioneer robot, among the ones not
already selected during the set cover, requires the least power consumption to go in a position
where it would have the uncovered target in its field of view. If a robot is close enough to the
target, we may be able to just turn it to point to the target. Otherwise we choose the closest robot
and we move it to a position where it is pointing to the target and the target is midway from the
closes to the farthest point it can see.

At this point all the targets are covered, in the field of view, of one of the components of the
PIM, the appropriate cameras are turned on and the images are sent to the monitoring station.
The loop now cycles to check for targets movements.

How to move a robot to cover an unseen target:

In this figure we show that the target is not in the field of view of the robot. The smaller circle is
the closest the robot can see and the bigger circle is the farthest the robot can see. In this case we
need to move the robot to be able to have the target in its field of view, so we'll move it placing
the target midway between the closest and the farthest the robot can see, between the circles in
the picture, and with the robot heading the target position, as shown in the next figure.

I Target 1 Target 2
i

Target 3 Target 4 Target 5

Robot 1 In view In view

Robot 2 In view In view

Robot 3 In view In view In view

Robot 4 In view In view

Target 1 Target 2 Tarf et 3 I Targ ?t 4 Target 5

v ew

vew

In view In v ew

In v

In v

ew

ew

In vi ;w

In view

In view

Set Cover Greedy algorithm: The pictures above illustrate an example of set cover problem:

The first component selected (either Pioneer or fixed camera) will be the number 3 since it has 3
targets in its field of view. Consequently to the choice of robot 3 we eliminate from the problem
the targets this robot can see: targets number 1, 3 and 4.

Now we have to cover targets 1 and 5 and none of the robots covers them both so the algorithm
will select robot 2 to cover target 2 and then either robot 1 or robot 4 to cover target 5. The
algorithm is concluded, no more targets need to be covered so we have a solution that is to turn
on the cameras on robot 1, 2 and 3 and to turn off the camera on robot 4 (if it was previously on).

r^
/

/
/

•s

•s *--m- \
\
\

- > *' \
\

/ \
/

\
/

\

\ •"• >
\

\
•
/

\ /
\ /
\ /

Figure 4: The guardian robots move in a coordinated fashion to keep the target robot
surrounded.

52 Coordination in PIM

We also demonstrated coordinating robots to keep a target surrounded as it moves. The target is
another robot, not part of the PIM, controlled by a human operator. The CP-controlled robots
have to adapt to the moving target by repositioning to maintain their relative position from its
center.

The robots controlled by the CP form a circle around the human-operated robot. The radius of
the circle and the initial position of the robots are set and are translated in relation to the initial
position of the human operated robot that acts as the center of the circle.

In this test we focused on keeping the guardian robots around the center robot while this moves
around the field. The center robot is free to move within the area surrounded by the guardians,
but if it approaches the borders of the area it will trigger a repositioning of the robots. While the
overall reaction times of the robots was limited by the hardware, the PIM model displayed a
robust coordination of the guardian robots, dynamically adjusting their positions to better take
advantage of the current situation as the target changed directions abruptly.

We also tested the effect of the PIM residency time and overall coordination. While the robots
appear to act simultaneously with CP residency times of 50ms, they become significantly less
reactive at a 500ms residency time, where it takes a full 1.5 seconds to complete a CP cycle. The
interesting aspect, however, was that the behavior was still reasonable despite these unrealistic
delays that we imposed on the system for experimental purposes.

Summary

We made significant progress this year in defining a novel architecture for distributed control
that has the robustness of distributed systems with the ease of programming of centralized
systems. Besides defining the architecture, we implemented a fully capable PIM runtime system

and demonstrated its viability in a series of experiments in coordinating a set of robots. We have
laid the groundwork for subsequent work focusing on demonstrating the effectiveness of the PIM
model of real-world scale problems such as persistent surveillance, reconnaissance and human-
robot search and rescue teams.

Publications
Sislak, D., Volf, P., Pechoucek, M., Suri, N., Nicholson, D., and Woodhouse, D. Optimization-
Based Collision Avoidance for Cooperating Airplanes. In Proceedings of the 2009
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT), vol. 2, pp. 375-378.

Quitadamo, R., Ansaloni, D., Suri, N., Ford, K.M., Allen, J., and Cabri, G. The PIM: An
Innovative Robot Coordination Model based on Java Thread Migration. In Proceedings of the
2008 International Conference on Principles and Practice of Programming in Java (PPPJ
2008).

Ford, K.M., Suri, N., Kosnar, K., Jisl, P., Benda, P., Pechoucek, M., and Preucil, L. A Game-
based Approach to Comparing Different Coordination Mechanisms. In Proceedings of the 2008
IEEE Distributed Human-Machine Systems Conference (DHMS 2008).

Ford, K.M., Allen, J.F., Suri, N. PIM - A Novel Architecture for Coordinating Behavior of
Distributed Systems, submitted to AI Magazine.

Sislak, D., Volf, P., Pechoucek, M., Suri, N., Nicholson, D., and Woodhouse, D. Automated
Conflict Resolution Using Probability Collectives Optimizer. To Appear in IEEE Systems, Man,
and Cybernetics.

Personnel Involved
James Allen, Principal Investigator, Research Scientist
Ken Ford, Co-PI, Research Scientist, Theoretical foundations
Niranjan Suri, Co-PI, Research Scientist, PIM Runtime
Pat Hayes, Research Scientist, Theoretical foundations
Choh Man Teng, Research Scientist, Formal analysis of recovery strategies
Maggie Breedy, Programming, Robot Interfaces
Massimiliano Marcon, Programmer, PIM Runtime
Satish Kumar, Research Scientist, Algorithms
Erika Benvegnu, Programmer, Robot Coordination
Jacques Perry, Student, programming
Matt Johnson, Programmer, Robot Control

